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A binary mixture of oppositely charged colloids which is driven by an external electric field is studied by
extensive Brownian dynamics computer simulations, ignoring hydrodynamic interactions. The particle inter-
action is modeled via a screened Coulomb potential together with a steric repulsion. A strong electric field
leads to lane formation of oppositely driven lanes. Each lane comprises particles of the same charge. A
nonequilibrium “phase diagram” classifying different steady states is obtained as a function of the colloidal
volume fraction and the Coulomb coupling. Different steady states are characterized by structural correlations
perpendicular and parallel to the applied field. We find a variety of different phases involving lane chains at
small volume fraction and low screening, and lanes with two-dimensional crystalline order perpendicular to the
field at high volume fraction. The lateral crystalline order can be a square, triangular, or rhombic lattice. In
between there is a lateral network structure. These predictions can be verified in real-space experiments on
oppositely charged colloids.
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I. INTRODUCTION

Colloidal suspensions in external fields are excellent
model systems to study phase transitions in and out of equi-
librium �1,2�. One important example, which builds on the
basics of electrophoresis and electro-osmosis �3�, is to ex-
pose charged colloidal particles to an external electric field.
A constant electric field leads to a nonequilibrium drift of the
particles. If a binary mixture of oppositely driven particles is
considered, there is a transition toward formation of lanes at
high driving fields and high concentration of particles. Each
lane consists of particles driven alike. This transition was
found in Brownian dynamics simulations �4–9� of a binary
mixture of repulsive particles driven by opposite forces. It
occurs in two and three spatial dimensions, and seems to be
a first-order nonequilibrium transition with a hysteresis in a
suitable order parameter �4�. Furthermore, there is a transi-
tion from lanes to a jammed configuration �10� at very high
particle concentrations. The general scenario is reminiscent
of that of pedestrians moving in two opposite directions in a
pedestrian zone �11,12�. Similar patterns were observed in
simulations of granular systems �13,14�, at fluid-fluid inter-
faces �15�, in sheared bilayers �16�, and in driven diffusive
lattice gases �17�.

Recently, the formation of lanes was confirmed in real-
space experiments by Leunissen et al. �18�. The dynamics of
oppositely charged colloidal suspensions in an external field
was studied by confocal microscopy. In the absence of an
electric driving field, these suspensions form binary crystals
�19,20� coexisting with a vacuum. If the applied field
strength exceeds a critical threshold, the equilibrium crystal
is destroyed and particles form lanes parallel to the applied
field, or jam in opposing bands perpendicular to the field
direction.

In this paper, we study a simple model designed for the
experimental situation of Ref. �18�. A binary mixture of op-
positely charged hard-core colloids is considered, which are

interacting via a screened Coulomb �or Yukawa� potential.
The particles are subjected to an external electric field which
drives the system out of equilibrium. The particles perform
Brownian dynamics. In order to keep the model as simple as
possible, hydrodynamic interactions mediated by the solvent
flow are ignored.

A nonequilibrium steady-state diagram is obtained as a
function of the colloidal volume fraction and the Coulomb
screening. Different steady states are characterized by struc-
tural correlations perpendicular and parallel to the applied
field. As a result we find a variety of different phases. First,
a situation without any macroscopic lanes occurs, which is
well separated from another one with lane formation. The
latter state can be a chain of lanes at small volume fraction
and low screening. At high volume fraction, on the other
hand, lanes with two-dimensional crystalline order perpen-
dicular to the field are found. Different lateral crystalline
structures involving squares, triangles, and rhombic cells are
stable. Furthermore, lanes with a phase-separating fluidlike
network structure in the lateral dimension do exist for inter-
mediate volume fractions. Our predictions should stimulate
further experimental activity. A quantitative comparison with
experimental data is in progress and will be presented else-
where.

The paper is organized as follows. In Sec. II, we describe
our model. In Sec. III, we define order parameters and struc-
tural correlations, which we utilize to characterize different
states. Brownian dynamics simulation results are presented
in Sec. IV. We conclude in Sec. V.

II. THE MODEL

We consider an equimolar binary mixture of NA=NB
=N /2 oppositely charged colloidal particles in three spatial
dimensions, where A and B label the two different species.
The particles interact via an effective screened Coulomb po-
tential �or Yukawa potential� plus a steric repulsion Vh:
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V�rij� = ZiZj
V0

�1 + ��/2�2

e�−���rij/�−1��

rij/�
+ Vh�rij� . �1�

It has been shown experimentally that this Yukawa interac-
tion is a suitable effective interaction for this system �18,21�.
Here, V0 is the strength of the potential and � is the particle
diameter, which serves as a length scale henceforth. Zi and ri
denote the charge and the position of particle i, respectively.
rij = �ri−r j� is the distance between particles i and j, i , j
=1, . . . ,N. The charges of the particles are chosen to be equal
in absolute values, i.e., ZA=−ZB= �Z�. The inverse screening
length � governs the range of the interaction and can be
tuned, e.g., by the salt concentration of the solution. The
steric repulsion between the particles, which prevents the
system from collapsing, is approximated by a shifted and
truncated Lennard-Jones potential

Vh�rij� = �����LJ

rij
	12

− ��LJ

rij
	6

+
1

4

 if rij � 21/6�LJ,

0 else,
�
�2�

with �=4�Z�2V0 / �1+�� /2�2. �LJ is the effective Lennard-
Jones diameter. In our studies we chose �LJ��. A plot of the
potential is shown in Fig. 1. The particles move in a fluid of
viscosity � and the system is held at fixed temperature T.

The dynamics are supposed to be completely overdamped
Brownian motion and we ignore hydrodynamic interactions.
The equations of motion for the particles’ trajectories ri�t�,
i=1, . . . ,N, are then the stochastic Langevin equations given
by �22�

dri�t�
dt

=
1

�
�


j=1

N

− �ri
V�rij� + Fi

ext�ri�	 + ri
R�t� . �3�

In Eq. �3� above, �=3��� is the friction coefficient. Fi
ext is

the external force acting on the particle i. In our studies
presented here, we consider a constant external electric driv-
ing field

Fi
ext = Zifez, �4�

where ez is the unit vector along the z direction and f is the
strength of the external electric field. Since the colloidal par-
ticles are oppositely charged, the external field drives the
different species in opposite directions. ri

R�t� denotes the ran-
dom displacement due to the kicks of the solvent molecules
acting on the colloidal particles. In Brownian dynamics
simulation algorithms, where time evolution is deemed to
occur in time steps of fixed length �t, the finite random
displacements ri

R�t� are chosen from a Gaussian distribution
having the properties �22�

��ri
R�t��G = 0, �5�

��ri
R�t��r j

R�t���G = 2DI	ij	�t − t�� , �6�

where �¯�G denotes the average over the Gaussian noise
distribution, I is the 3
3 unit matrix, and 	ij denotes Kro-
necker’s symbol. D is the Stokes-Einstein diffusion coeffi-
cient, for which the Einstein relation gives �D=kBT, where
kBT is the thermal energy of the system. The integration of
Eq. �3� is carried out by using the stochastic Runge-Kutta
algorithm which has been shown �23,24� to give more accu-
rate results than the conventional Brownian dynamics algo-
rithm of Ermak �25�.

Our model is specified by different input parameters such
as the volume fraction �=���3 /6 of the colloidal particles,
with �=N /
 the number density and 
 the system’s volume,
the dimensionless inverse screening length �*=��, and the
dimensionless ratios U0=Z2V0 /kBT and f*= �Z�f� /kBT. The
parameters chosen correspond to the experimental situation
of Ref. �18�. In our studies we keep U0=50 and f*=276 fixed
and vary the inverse screening length and the volume frac-
tion. We chose a strong field to ensure that we are in the
laning regime. In addition to the length scale �, a suitable
time scale is �B=��2. The Langevin equations of motion
including the external field are numerically solved using a
finite time step �t=0.000 05�B in all simulations. We use a
cubic box with periodic boundary conditions in all three di-
rections. The number of particles in the cubic simulation box
of length L is NA=NB=1000. The length L is adjusted such
that �=N��3 /6L3. We tried different starting configurations
but the system was observed to run into the same nonequi-
librium steady state independent of the initial configuration,
unless stated differently in the text. Statistics were gathered
after an initial relaxation period of 20�B. We address the
issue of system-size effects in Sec. IV C.

III. ORDER PARAMETERS AND STRUCTURAL
CORRELATIONS

We monitor a suitable order parameter � to detect the
laning transition, which is defined as follows. An order pa-
rameter �i= �nl−no�2 / �nl+no�2 is assigned to every particle i.

1 2 3 4 5
r

ij
/σ

0

2

4

6
V

(r
ij)/

V
0

Z
i
Z

j
> 0

Z
i
Z

j
< 0

FIG. 1. �Color online� Interaction potential between like-
charged �solid� and oppositely charged �dashed� particles for ��
=1 and �LJ��.
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The numbers nl and no are the numbers of like-charged par-
ticles and oppositely charged particles, respectively, whose
projections of distance onto the plane perpendicular to the
field are smaller than a suitable cutoff length scale zc. This
order parameter is equal to 1 if all particles within this dis-
tance criterion are of the same kind and zero if nl=no, i.e., a
homogeneous mixture. We chose for convenience zc= 3

4� to
detect all lanes starting from a single queue of particles. The
global order parameter � is then defined as

� =
1

N�

i=1

N

�i�
t

, �7�

where the angular brackets �¯�t denote a time average. The
global order parameter � is practically zero for a homoge-
neous mixed configuration, since oppositely charged par-
ticles will be found inside the cutoff distance but it gets close
to unity if the same particles are located on top of each other,
i.e., in a state of lanes. In what follows we will use the
following threshold: for ��3/4 we call the configuration a
state of lanes while in the opposite case ���3/4� we call it
a state without lanes. A typical result for the order parameter
� as a function of the volume fraction � is depicted in Fig.
2 for different inverse screening lengths �*. We observe that
for low volume fractions ��0.01 the laning order parameter
is small, but upon increasing the volume fraction it sharply
increases to a value close to unity. Only for strongly Cou-
lomb coupled particles, �*�1, is the order parameter in the
laning regime for �=0.01. This behavior can be understood
intuitively. When the volume fraction and the Coulomb cou-
pling are small, the mean particle separation is several diam-
eters and thus the particles are hardly correlated and do not
form lanes; whereas for sufficiently high densities or suffi-
ciently low �* we observe lane formation due to the stronger
interaction.

As mentioned in the Introduction we find a variety of
different situations within the laning regime depending on
the volume fraction and the screening length. Therefore, we

monitor the following analysis tools to classify different
states of lanes. We calculate a pair distribution function per-
pendicular to the field direction to check for the structure in
the lateral direction which is defined as follows:

g��r�� =
1

�N� 

i,j

�i�j�

N

	�r� − �ri� − r j���	�zi − zj��
t

. �8�

Here, r� denotes the lateral direction, i.e., r= �r� ,z�. Simi-
larly, we calculate the pair distribution functions between the
different particle species gAB�r�� and like-charged particles
gAA�r��, which are defined as follows:

gAB�r�� =
2

�N� 

i,j

�Zi�Zj�

N

	�r� − �ri� − r j���	�zi − zj��
t

�9�

and

gAA�r�� =
2

�N� 

i,j

�Zi=Zj,i�j�

N

	�r� − �ri� − r j���	�zi − zj��
t

.

�10�

Additionally, we calculate the Fourier transforms ĥX�k� of
hX�r��=gX�r��−1 to obtain the structure factors

SX�k� = 1 + �ĥX�k� , �11�

with X= � ,AA ,AB and the wave vector k= �k�, where k
= �2� /L��kx ,ky� and kx and ky are integers. A prepeak in the
structure factor is an indication of an additional mesoscopic
length scale as is typical for bicontinous networks, such as,
e.g., microemulsions �26,27�.

To detect two-dimensional crystallization in the lateral di-
rection we monitor bond-order parameters ���k�� similar to
those frequently used in two-dimensional systems �28–31�.
These order parameters check for symmetry of the bonds
between particles. We assign to every particle a local bond-
order parameter

�i
�k� = � 1

Nb


j=1

Nb

eki�ij� , �12�

which is close to unity for a particle whose neighbors have a
k-fold symmetry, and remains small otherwise. The global
bond-order parameters ���k�� are then defined by

���k�� =
1

N�

i=1

N

�i
�k��

t

. �13�

In Eq. �13�, i runs over all particles of the system, and in Eq.
�12�, j runs over all neighbors of i, �ij denotes the angle
between the projection of the bond connecting particles i and
j onto the xy plane and an arbitrary but fixed reference axis
in this plane, and Nb denotes the number of bonds of particle
i. We define a bond between two particles if they are next
neighbors in the z direction and their projected distance onto
the xy plane is less than 1.3� and more than �. This some-
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FIG. 2. �Color online� Dimensionless order parameter � as a
function of the volume fraction � for different inverse screening
lengths �*. The straight line indicates the threshold dividing states
of lanes �above� from states of no lanes �below�.
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what arbitrary definition may be applied since we find that
the resulting ��k� depends only weakly on the precise defi-
nition of the neighbor distance. In fact, it has already been
observed earlier that details of the neighborhood definition
have negligible influence on the results of the bond-order
parameter �29,30�. This allows us to discriminate between a
fluidlike structure where all ���k�� are small and a crystalline
one. Furthermore, a k-fold symmetry within a crystalline
structure in the lateral direction can clearly be detected. The
distribution function P��i

�k�� according to Eq. �13� of the
local bond-order parameter �i

�k� also sheds light on the co-
existence of a crystalline phase with a second one, since its
distribution reveals a two-peak structure in that case. Thus it
allows for detection of coexistence regimes.

IV. RESULTS

A. Different state points

Let us now discuss eight different typical state points
shown in Figs. 3–14 below and then summarize more data in
a nonequilibrium state diagram in Fig. 15. For each, we
monitor the lateral pair distribution function g��r�� as de-
fined in Eq. �8� and present the results with a typical particle
snapshot projected to a plane perpendicular to the applied
driving field. We accompany the results with adequate struc-
tural correlations and order parameters. The first parameter
set is for low density ��=0.01� and high screening ��*=7�;
see Fig. 3. In this case, there is no fully developed lane
formation, yet the projected particle snapshots reveal some

anisotropic coarsening which results in an intermediate value
of the order parameter �=0.5 as shown in Fig. 2. Concomi-
tantly, apart from a correlation hole, there is no liquid or
solid structure in the lateral direction, because the particles
hardly interact with each other.

The second situation is for low screening and low density
��=0.01�. Then, initially a few lanes of oppositely charged
particles form chainlike objects, i.e., a string of alternating
lanes; see Fig. 4. This formation process occurs typically
within a few �B, when starting from a mixed disordered con-
figuration. We emphasize that a strong mutual attraction is
needed to stabilize the chains; no chains are obtained for
repulsive Yukawa mixtures �4�. It is interesting to follow the
further dynamical evolution of the chains. Then, neighboring
lane chains fuse subsequently and grow. The fusing process
is slow compared to the initial formation of the small chains.
The growing process can clearly be deduced from the pro-
jected snapshot of Fig. 5�b� and the corresponding lateral
pair correlation function Fig. 5�a�, which exhibits an order-
ing phenomena along the chains. In the latter case, the pair
correlation reveals more peaks than in the early stage, show-
ing that the average chain length is growing in time. In Fig.
6 the number of chains NC as a function of time is displayed.
One clearly observes the gradual reduction in the number of
chains. The inset shows a log-log plot suggesting that the
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FIG. 4. �Color online� Same as Fig. 3 for �=0.01 and �*=0.2.
Statistics are gathered after an initial relaxation time of 10�B.
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FIG. 3. �Color online� Pair distribution function g��r�� as de-
fined in Eq. �8� for �=0.01 and �*=7 �a� and the corresponding
projections of the particle positions onto the area perpendicular to
the field �b�.
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FIG. 5. �Color online� Same as Fig. 4. Statistics are gathered
after an initial relaxation time of 320�B.
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FIG. 6. �Color online� Number of chains NC as a function of
time. The straight line is the best fit of a scaling law to the simula-
tion results �symbols�. The inset shows a double-logarithmic plot of
the same data.
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decrease follows a scaling law with best fit NC=A / t� with
A=60 and �=0.32. But, due to the limited time window
accessible in the simulation, the ultimate steady state is not
clear; one may conjecture that it is a fully phase-separated
region coexisting with a region of no lanes. Nevertheless, the
lane chains should be clearly observable as transient dynami-
cal states in an experiment. A similar chain formation is ob-
served for higher volume fraction up to �=0.05. The appear-
ance of chains can be qualitatively understood when
regarding pairs of lanes. Since a lane pair of oppositely
charged particles clearly possesses a dipolar moment the ef-
fective interaction between pairs is expected to be like that
between dipoles. In fact, a similar chaining behavior has also
been observed in equilibrium dipolar fluids; see, e.g.,
�32–34�.

Next we explore a parameter combination with low
screening and high density; see Fig. 7, where data for �
=0.3 and �*=2 are shown. As is clearly visible from both the
pair correlation function and the projected snapshots, a lat-
eral crystal-like order emerges. Oppositely driven lanes are
placed on a square lattice as the high value of ���4��=0.95
clearly reveals. The sharp distribution of P��i

�4�� depicted in
Fig. 7�d� indicates indeed a single state with fourfold sym-
metry. This lattice formation can be qualitatively understood
from an effective interaction between oppositely charged
driven lanes which has a short-ranged repulsive part and a
long-ranged attractive interaction. The former is caused by
friction between oppositely driven particles, while the latter
just results from the bare Coulomb interaction. From the data
we conclude that the positional order in the lane location is
really long ranged. This is supported by a simulation of a
system that is eight times bigger, as will be discussed in Sec.
IV C.

The next parameter combination is high screening and
high volume fraction, �=0.4 and �*=8; see Fig. 8. Here the
strong friction between oppositely driven particles enforces

lane formation, and the high density results in a rhombic or
triangular packing of different lanes. This lattice is then
decorated with different charges. The sixfold symmetry of
the lattice of this parameter combination is revealed by the
averaged value of ���6��=0.83. The distribution of �i

�6� is
also shown in Fig. 8�c�. For less screening, �*�3, we find a
rhombic lattice with a twofold symmetry.

Next we go for further intermediate cases. The most strik-
ing new state occurs at high screening and intermediate vol-
ume fraction; see Figs. 9 and 10, where data for �=0.1 and
�*=5 and 10 are shown. Here one encounters an in-plane
structure reminiscent of a percolating network, bicontinuous
microeemulsion, or microphase-separated system. We call
this structure networklike. It is characterized by liquidlike
order in the lateral direction �see Figs. 9�a� and 10�a��. The
prepeaks in the structure factors SAA�k� in Fig. 11�b� reveal
an additional length scale that depends on the screening
length �*. The peaks clearly show that the average thickness
of the lateral regions of like-charged particles is significantly
affected by the choice of �*. The characteristic spacing in
this structure can be also extracted from the pair correlation
function between the different particle species gAB as defined
in Eq. �9� �see Fig. 11�a��. These result show that the char-
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FIG. 7. �Color online� Same as Fig. 3 for �=0.3 and �*=2.
Additionally, a corresponding simulation snapshot �c� and the bond-
order parameter distribution P��i

�4�� �d� are shown. The latter
clearly indicates a square lattice in the lateral direction.
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FIG. 8. �Color online� Same as Fig. 3 for �=0.4 and �*=8.
Additionally, the bond-order parameter distribution P��i

�6�� �c� is
shown. It clearly reveals a sixfold symmetry of the lattice in the
lateral direction.
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FIG. 9. �Color online� Same as Fig. 3 for �=0.1 and �*=5.
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acteristic spacing is increasing with increasing �*. This is
also qualitatively supported from the projection snapshots in
Figs. 9�b� and 10�b�.

Then we observed a mixed situation of two coexisting
dynamical states. Coexisting states are characterized by two
peaks in the appropriate bond-order parameter distribution,
indicating that parts of the system are in a k-fold regime

while other parts of the system are not. These results are
summarized in Figs. 12 and 14. The former shows a coexist-
ence between a region of no lanes and a square lattice phase
which involves empty holes and the fourfold symmetry in
the lattice is indicated by the second peak in the bond-order
parameter distribution both depicted in Fig. 13�a�. The pre-
peak in the structure factor S��k� in Fig. 13�b� shows an
additional length scale caused by the voids. But, as in the
chaining situation, it is not completely clear whether this is a
transient state toward a complete square lattice and no lanes
phase separation, or whether this is a stable state. However,
if a completely separated state is used as a different starting
configuration, it stays stable well over the time explored by
the simulation.

Finally in the projected snapshot of Fig. 14�b� one ob-
serves both local network structures and parts with triangular
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FIG. 10. �Color online� Same as Fig. 3 for �=0.1 and
�*=10.
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FIG. 11. �Color online� Pair distribution function gAB�r�� �a�
and structure factor SAA�k� of like-charged particles �b� for �=0.1
and �*=5 and 10.
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FIG. 12. �Color online� Same as Fig. 3 for �=0.1 and �*=1.
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crystallinity. The underlying sixfold symmetry is again re-
vealed by the bond-order parameter distribution.

B. Steady-state phase diagram

In Fig. 15 we present a nonequilibrium steady-state phase
diagram for fixed driving force as a function of the screening
parameter �* and the volume fraction �. In addition to the
eight parameter combinations that were already discussed in
detail, more data are collected here. There are stable states
with no lanes, network-forming lanes, square, triangular, and
rhombic lateral crystals of lanes, and associated coexistence
situations. Solid lines separate the different states. The chain
formation is shown as well. The broken line separating this
state from the others indicates that we are not sure whether
this is a transient state on the way to square and no-lane

coexistence or a stable state. This phase diagram should be
detectable in experiments on highly charged colloidal sus-
pensions.

It is interesting to correlate our results with in equilibrium
the phase diagram of the same system in equilibrium without
an external field which was calculated by Hynninen et al. for
�*=6 and varying temperatures and volume fractions in �19�.
Similar to our results, they find a variety of different stable
states due to the competition between the repulsive core and
the screened Coulombic attraction. Let us first go through the
phase diagrams from low to high volume fractions for weak
Coulomb coupling, which corresponds to high temperature
in the phase diagram of Hynninen et al. and high screening
in ours. In equilibrium one encounters first a fluid phase,
then a fluid and fcc-disordered coexistence regime, and ends
up in a fcc-disordered phase. Analogously, in our phase dia-
gram we start from two regimes with no crystalline order,
namely, no lanes and network, and go through a triangular
lattice–network coexistence to a triangular lattice. This part
of the phase diagram is in both cases mainly dominated by
the repulsive core. For stronger Coulomb coupling, on the
other hand, the equilibrium case reveals a broad gas-CsCl
coexistence. The corresponding part in our phase diagram
shows similarly a coexistence between a square lattice and
no lanes. In our case we find additionally the special case of
coexistence between a square lattice and no lanes: the chain
regime. Finally, for higher packing fractions and strongly
interacting particles, Hynninen et al. find three different crys-
tal structures for increasing volume fractions: CuCl, CsCl, or
tetragonal structure. In our case, we find analogously a tran-
sition from a square to a rhombic lattice. We emphasize,
however, that this is just a qualitative comparison between an
equilibrium and a nonequilibrium phase diagram.

C. Finite system size effects

We have also addressed the issue whether the observed
results are influenced by the system size and whether the
periodic boundary conditions support lane formation. There-
fore, we carried out several benchmark simulations with a
system that is eight times bigger, i.e., N=16 000 particles.
We applied the same external field as previously as well as a
field tilted by 45° such that lanes do not connect themselves
due to the periodic boundary conditions. We compare the
simulations to the previous results after the same initial
simulation time. We find that the qualitative results are influ-
enced neither by system size nor by the field direction. We
further confirm that the quantitative results depend only
weakly on the system size.

We exemplify this with two state points and compare
them to earlier discussed results. First, we consider �=0.01
and �*=0.2. For this parameter combination we find chains
of lanes. Typical projections of the particles’ positions onto
the area perpendicular to the field for N=2000 and 16 000
are presented in Fig. 16. For the larger system only 1/8 of
the system is displayed to enable comparison on the same
dimensions. Obviously, we find qualitative agreement with
the previously shown results. The quantitative agreement can
be deduced from the pair distribution functions g��r�� in
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Fig. 17. They reveal the same number of peaks, suggesting
that the average width of a chain is nearly unaltered by the
system size.

The second state point is �=0.1 and k*=10, where we
find a networklike structure. In Figs. 18�a� and 18�b� the
projected particle positions for the two system sizes with the
same driving field are displayed. To make the point, for the
larger system we again show only 1/8 of the system. Once
again, the qualitative agreement is obvious. Quantitatively,
we compare the pair distribution functions gAB�r�� in Fig.
19. It suggests that the characteristic spacing is more or less
system-size independent.

The influence of the periodic boundary conditions, which
support laning by connecting the lanes to each other when
the driving field is along the box orientation is also small, as
can be seen when tilting the external driving field. We then
find the same qualitative behavior; see Figs. 18�a� and 18�c�.
Here, we depict a simulation snapshot for an external field
tilted by 45°, i.e., Ei

ext=Zif�ey +ez� /�2.

V. CONCLUSION

In conclusion, we have analyzed steady states in a driven
mixture of oppositely charged colloidal particles which ex-
hibit lane formation. By structural diagnostics, different
states were distinguished via a different degree and order of
the lanes. At high Coulomb coupling and low densities, a
chaining of oppositely charged lanes was observed. Further-
more, there is the possibility of lateral crystallization of lanes

(a)

(b)

(c)

FIG. 18. �Color online� Projections of the particles’ positions
onto the area perpendicular to the field for �=0.1 and �*=10. �a�
Same plot as in Fig. 10�b�. �b�, �c� Same setup but for N=16 000
particles. In �c� the external driving field is tilted by 45° such that
the lanes do not connect themselves due to the periodic boundary
conditions. For �b� and �c� only 1/8 of the system is displayed to
compare with the smaller system depicted in �a� on the same
dimensions.

(a) (b)

FIG. 16. �Color online� Projections of the particles’ positions
onto the area perpendicular to the field for �=0.01 and �*=0.2 after
an initial relaxation time of 10�B. �a� Same plot as in Fig. 4�b�. �b�
Same setup but for N=16 000 particles. For �b� only 1/8 of the
system is displayed to compare with the smaller system depicted in
�a� on the same dimensions.

0 1 2 3 4 5 6 7 8
r⊥/σ

0

2

4

6

8

10

12

14

16

18

g ⊥
(r

⊥
)

N = 2000
N = 16000

FIG. 17. �Color online� Pair distribution functions g��r�� for
�=0.01 and k*=0.2 for two different system sizes N=2000 and
16 000 after an initial relaxation time of 10�B.
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into two-dimensional square, triangular, or rhombic lattices.
This state occurs for high densities.

In the future we shall focus on a detailed comparison
between our simulation data and the experimental data from
Ref. �18�. Work along these lines is in progress. It would be
interesting to check whether effective dipolar interactions be-
tween the charged particles, which are mediated by the dis-
torted counterion cloud around the colloids in an electric

field, are relevant. These forces favor aligning particles no
matter how they are charged. Furthermore, one should more
carefully incorporate and study hydrodynamic interactions
between the colloidal particles mediated by the solvent flow
�35�. We expect that hydrodynamic interactions disfavor
lanes driven in opposite directions next to each other, result-
ing in a competition between Coulombic and hydrodynamic
interactions. However, for strongly charged particles at low
physical volume fractions, we expect a minor influence of
hydrodynamic interactions such that the topology of the
phase diagram can be observed in a real-space experiment.

It would further be interesting to generalize the setup to
driven nonspherical particles like rodlike particles and/or to
rod-plate mixtures where new effects are anticipated
�36–38�. Finally, the special case of a mixture of charged and
uncharged particles, as recently studied by simulation in Ref.
�39�, should receive more attention and should be classified
according to our structural criteria.
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